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We study quantum oscillations of the magnetization in Bi2Se3�111� surface system in the presence of a
perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound
effects on the magnetization properties that are fundamentally different from those in the conventional semi-
conductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization
chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied
or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic suscep-
tibility and Hall conductance are also discussed.
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Magnetic oscillation, which was predicted by Landau in
1930,1 has been a focus in the condensed matter physics
field. One important reason is that the de Haas-van Alphen
�dHvA� oscillations of magnetization provide a vigorous
technique to study the properties of carriers around the Fermi
surface. Especially in the last decade, thanks to the tremen-
dous advances in microscopic semiconductor technology, the
challenge encountered in the measurement of weak magne-
tization signal has been largely prominently overcome, and
the magnetic dHvA oscillations in the two-dimensional elec-
tron gas �2DEG� systems have thus been extensively studied.
For instance, Meinel et al.2–4 developed dc superconducting
quantum interference device magnetometers to study the
dHvA oscillations in high-mobility semiconductor 2DEG.
Schwarz et al.5–7 studied the dHvA oscillations by using mi-
cromechanical cantilever magnetometers. Besides the purely
orbital part, prominently, the influence8 of the weak Rashba
spin-orbit interaction �SOI� on the dHvA oscillations in the
magnetization of the semiconductor 2DEG can also be effec-
tively determined in experiment,9 which therefore opens a
door to measurement of the spintronic parameters in semi-
conductor heterostructures.

In the above-mentioned conventional semiconductor
2DEG systems, in which the electron motion is dominated
by its orbital part, i.e., the magnetization oscillation mainly
comes from the response of the electron k-quadratic kinetic
energy to the external magnetic field. Although sometimes
other factors than the pure kinetic energy, such as the spin-
orbit interaction,8 have been taken into account, these factors
in conventional semiconductor 2DEG systems play only a
minor role. For example, they can result in a beating mode
superposed onto the main dHvA oscillation pattern.9 This
situation, however, will be greatly changed by very recent
theoretical finding10 and experimental verification11 of the
topological insulators �TIs� with strong spin-orbit interaction.
As a new state of matter as addressed by Kane and Mele,12

the subject of time-reversal invariant TIs has attracted great
attention in condensed-matter physics. Several three-
dimensional �3D� solids, such as Bi1−xSbx alloys,
Bi2Se3-family crystals, have been identified13–17 to be strong
TIs possessing anomalous band structures characterized by a

Z2-valued topological invariant.12,18 This invariant, called �0,
counts the number of topologically protected gapless surface
states �modulo 2�. A nonzero invariant means that the surface
of 3D TIs will be metallic. Instead of the conventional semi-
conductor 2DEG systems, the energy scale for the surface
states of these 3D TIs is dominated by the k-linear spin-orbit
interaction instead of the parabolic kinetic energy. As a re-
sult, it is expected that the magnetic response properties of
these topological surface states are fundamentally different
from those of the conventional 2DEG.

Inspired by this observation, as well as by the recent ex-
perimental observation of the Landau quantization of the sur-
face states of Bi2Se3,19 in this paper we study the electron
magnetic oscillations of these surface states. Specially, we
consider the surface states of Bi2Se3. The first-principles sur-
face band structure of Bi2Se3 is calculated by a simple su-
percell approach with spin-orbit coupling included and
shown in Fig. 1�a� along the high-symmetry lines ��→M,
M→K, and K→�� in the surface Brillouin zone. In obtain-
ing Fig. 1�a�, here we have used Vienna ab initio simulation
package �VASP�.20 The Perdew-Burke-Ernzerhof21 general-
ized gradient approximation and the projector-augmented
wave potential22 were employed to describe the exchange-
correlation energy and the electron-ion interaction, respec-
tively. The SOI, which has been confirmed to play an impor-
tant role in the electronic structure of Bi2Se3, was included
during the calculation. The cut-off energy for the plane-wave
expansion was set to 300 eV. During the calculation, the
experimental lattice constants23 were adopted, i.e., a
=4.143 Å, c=28.636 Å, with the internal parameter opti-
mized automatically. The Bi2Se3�111� surface was modeled
by a slab composing of six quintuple layers �QLs� and a
vacuum region of 20 Å. Integration over the Brillouin zone
was done using the Monkhorst-Pack scheme24 with 10�10
�1 grid points for surface calculations. The structures of
bulk and slab were fully optimized until the maximum re-
sidual ionic force were below 0.01 and 0.02 eV /Å, respec-
tively. From Fig. 1�a� two chiral surface states are clearly
seen to connect the conduction band and valence band, and
cross each other to form a single Dirac-type contact at the �
point and aligning with the Fermi energy. The intrinsic de-
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fects such as the substitutional Bi defects at Se sites or the Se
vacancies will play a role of n doping and consequently shift
the Fermi level above the Dirac point. Note that due to the
difference in the local symmetry between the top and bottom
surfaces, there can develop an observable asymmetric charge
distribution on the two surfaces if the sample is thin enough.
This fact sometimes can open a small gap between the two
spin chiral surface states as shown in Fig. 1�b� which pre-
sents an enlarged version of the surface bands around the
Dirac cone. With increase in the thickness of the film, how-
ever, this asymmetry-induced Dirac gap tends to vanish, and
this actually corresponds to the recent Landau quantization
experiment, in which the used epitaxial Bi2Se3 is as thick as
50 QLs.

We report the calculated magnetization of the electrons on
Bi2Se3 surface as a response to the external magnetic field. It
is found that the magnetization oscillations in the present
system differs from the traditional 2DEG by the fact that the
dHvA oscillating center in Bi2Se3 departs from the well
known �zero� value in the semiconductor 2DEG system. This
departure has an intimate relation with the different Landau
spectrum structures in these two kinds of systems. It is well
known that the Landau levels �LLs� in the traditional 2DEG
obey the B�n+1 /2� rule with B being the external magnetic
field and n the LL index. However, the energy spectrum of
the surface states in Bi2Se3 approximately obeys a �nB rule.
It is this difference in LLs that distributes differently in the
two components of the magnetization, and eventually result
in the different magnetic properties in these two systems.
Furthermore, we have shown that the zero-mode LL plays a
key role in determining the magnetization behavior in the TI
surface systems.

The Hamiltonian describing the gapless surface states of
Bi2Se3 can be approximately written as

H�k� = �k2 + �vF�kx�y − ky�x� , �1�

where vF is the Fermi velocity and � are the Pauli matrices
for surface-state electron spins. Note that this Hamiltonian
has the same form as that of the conventional 2DEG system
with Rashba spin-orbit coupling.8 However, the intrinsic dif-
ference between these two kinds of systems is that the
k-linear spin-orbit interaction is primary to the TI surface
states, while the parabolic term is dominant in the conven-
tional 2DEG. Although it is very simple, the Hamiltonian �2�
is a general one, which can satisfactorily describe the gapless
surface states of Bi2Se3 near the Dirac point. This satisfac-
tion is particularly obvious for the upper part of the Dirac
cone �electron part�, as shown in Fig. 1�b�, where Eq. �2� is
used to fit the first-principles result, which gives �=2.1
�102 meV nm2 and �vF=200 meV nm �namely, vF=3.04
�105 m /s�. The effective mass m� is then obtained as
0.18me according to �=�2 /2m�, where me is the mass of a
free electron. The lower surface states �hole part� is not well
described by Eq. �2� and a better fitting needs higher k-order
corrections. For simplicity, and for the reason that we only
concern the n doping, here we neglect O�k3� terms.

Let us now consider an external magnetic field B=Bẑ
being perpendicular to the surface. Taking the Landau gauge
for the vector potential, Ax=By and Ay =0, and the transform
�k→�=�k+eA, one can obtain the following Hamiltonian:

H =
�2

2m�
+ vF��x�y − �y�x� −

1

2
gs�BB�z, �2�

where gs is the effective magnetic factor of the surface elec-
tron and �B is the Bohr magneton. For Bi2Se3-family �111�
surfaces, the value of gs is approximately 8.0.25 Taking the
fact that the system is translation invariant along the x axis
and therefore the wave number kx along this direction is a
good quantum number, the Hamiltonian �2� can be rewritten
as

H = ��c�a†a +
1 − g�z

2
+ i�2	�a�− − a†�+�� ,

where �
= ��x
 i�y� /2, �c=eB /m�, and 	=vFm�lB /� is the
effective Rashba spin-orbit coupling with lB=�� /eB being
the magnetic length, g=gsm

� /2me, and a= �y+ ��kx
+ ipy� /eB� /�2lB is the usual harmonic oscillator operator.
The LLs are then given by

En
�
� = ��c�n 


1

2
��1 − g�2 + 8n	2� �3�

with n=1,2 , . . .. The n=0 LL only has the “+” branch, E0
�+�

= �1−g�
2 ��c. The corresponding two-component eigenstates for

En
�
� are given by

�n	�
� = � cos �n
�
��n	

i sin �n
�
��n − 1	

� , �4�

where �n	 is the eigenstate of the nth LL of a free two-
dimensional spinless electron. Here, tan �n

�
�=−un
�1+un
2

FIG. 1. �Color online� �a� The ab initio calculated band structure
of the Bi2Se3�111� thin film with the thickness of six quintuple
layers. The red lines indicate the surface states while the black lines
correspond to the bulk bands. �b� The fitting curves �blue lines�
around the � point with the model Hamiltonian �Eq. �1��.
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with un= �1−g� /�8n	 when n0 and �0
�+�=0 for n=0. It is

interesting to see that the n=0 LL has the fully polarized spin
along the z direction. Figure 2 plots the LLs as functions of
the magnetic field. Note that although the LL Eq. �3� for
Bi2Se3 surface states has a similar form with the conven-
tional spin-orbit coupled semiconductor 2DEG,8 these two
systems are fundamentally different by the amplitudes of the
physical parameters. For the former the dimensionless pa-
rameter 	�1 while for the latter 	�1. Actually, for Bi2Se3,
the Se-terminated �111� surface lattice constant is a
=4.143 Å. With this knowledge and through a normal fitting
process, we obtain that at the external magnetic field B
=1 T, ��c=0.61 meV, and 	=12.4. However, for a con-
ventional 2DEG system with Rashba coupling, the dimen-
sionless parameter 	 is typically in the range 0
0.2. Based
on this fact, the energy spectrum in Eq. �3� can be well
approximated by the dispersion relation

En
�
� = 
 ��c�2n	2 +

g2

4
= 
 vF

�2ne�B + �2 �n � 0� ,

E0
�+� = sgn�gs�vF��� , �5�

where �=gs�BB /2vF. Because the Zeeman splitting is much
smaller than the LL separations �for example, g=0.72 when
gs takes the value 8, resulting in 1

2gs�BB=0.13 meV at B
=1 T�, thus the effect of the Zeeman term on the n�0 LLs
is very tiny and can be safely neglected in considering the
electron occupation of n�0 LLs. It is not so, however, for
the n=0 LL. In fact, in the absence of the Zeeman splitting,
the Dirac-Landau energy spectrum in Eq. �5� is massless
with a whole electron-hole symmetry and only half of the
zero mode is occupied by electrons in the case of n doping. If
the Zeeman splitting is finite, the spectrum in Eq. �5� is mas-
sive and the n=0 LL shifts upward or downward, depending
on the orientation of the exchange field �the sign of gs�.
Correspondingly, this “zero” mode will be saturated by elec-
trons for gs0 or empty for gs�0, which, as shown in the
following discussion, will greatly influence the behavior of
the magnetic response of the system.

Now with the LL spectrum in Eq. �5� �or the k2-corrected
LL spectrum in Eq. �3�, we study the magnetization of the
surface electrons of Bi2Se3. The magnetization density is the
derivative of the Helmholtz free energy density with respect
to B at fixed electron density N and temperature T, M
=−��F /�B� �N,T. The Helmholtz free energy density is given
by

F�B,T� = �N −
N�

�
�
n=1

�

ln�1 + e���−En
�+��� −

N0

�
ln�1 + e���−E0

�+��� ,

�6�

where �=1 /kBT, N�=1 /2�lB
2 is the degeneracy for a nonzero

LL �namely, the number of electrons per unit area on a LL�,
and � is the electron chemical potential. The second line in
Eq. �6� denotes the contribution from the n=0 LL and there
exist three possibilities for its contribution: �i� if this level is
exactly a zero mode, E0

�+�=0, then the system has the
electron-hole symmetry and half of the particles in the zero
mode are electrons. In this case N0=N� /2. �ii� If the Zeeman
splitting cannot be neglected and the g factor is positive as
Eq. �3� shows, then the n=0 LL shifts upward and is fully
accessible to electrons. In this case N0=N�. �iii� otherwise, if
the g factor is negative, then the n=0 LL shifts downward
and is unavailable to electron occupation. In this case N0
=0. The B-dependent chemical potential � in Eq. �6� is con-
nected to the experimentally accessible electron density N,
which is given by

N = N��
n=1

�

fn
�+� + N0f0

�+� �7�

with fn
�+�=1 / �e��En

�+�−��+1� being the Fermi-Dirac distribution
of the LL En

�+�. From Eq. �6� the electron magnetization
density becomes

M = − ��
n=1

�

N�fn
�+��En

�+�

�B
+ N0f0

�+��E0
�+�

�B
�

+ � e

h
�
n=1

�
1

�
ln�1 + e���−En

�+��� +
1

�

�N0

�B
ln�1 + e���−E0

�+����
� M�0� + M�1�. �8�

The first part M�0� is the conventional contribution from the
B dependence of the LLs and thus denotes a diamagnetic
response. The second part M�1� comes from the B depen-
dence of the level degeneracy factor N�, thus describing the
effect of the variation in the density of states upon the mag-
netic field and denoting a paramagnetic contribution to the
total magnetization. Obviously, M�0� is negative while M�1� is
positive, the net result is an oscillation of the total magneti-
zation M as a function of B.

We plot in Figs. 3�a� and 3�b� the magnetic dHvA oscil-
lations of the chemical potential and magnetization in Bi2Se3
for the above-mentioned three cases of zero-mode filling.
Comparing to the well-known dHvA oscillating pattern in
the conventional 2DEG, one can immediately obtain three
prominent features in the present TI surface system: �i� al-

FIG. 2. The Landau levels in the Bi2Se3�111� surface system as
functions of the external magnetic field B.
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though the oscillating center of the chemical potential �
keeps a fixed value unchanged by changing the external
magnetic field B when the n=0 LL is exactly a zero mode, it
linearly increases/decreases with B when the g factor is
positive/negative. �ii� The oscillating center of the magneti-
zation M keeps a nonzero value unchanged by varying the
external magnetic field strength. This is totally different from
those in the semiconductor 2DEG. It is well known that in
the clean semiconductor 2DEG sample, the oscillating center
of the chemical potential � keeps a constant value un-
changed and that of the magnetization M keeps zero un-
changed when varying the magnetic field B. �iii� The mag-
netization for the case of empty zero mode is fundamentally
distinguished from the cases of saturated and half-filling zero
mode by a total sign inversion. In addition, the magnetic
oscillation patterns for the cases of saturated and half-filling
zero mode are out phase. Thus, Fig. 3 clearly reveals the
fundamental role the zero mode played in determining the
magnetic response properties of the TI surface states.

For further illustration and to see the origin of the sign
inversion in the magnetization when the zero is changed
from filling to unfilling, let us first consider the case of satu-
rated zero mode. In this case the n=0 LL is occupied by
electrons with the degeneracy N0=N�. The discrepancy in the
dHvA oscillating patterns between the TI surface and the
semiconductor 2DEG comes from their different energy dis-
persion relations. The former versus the external magnetic
field obeys square root rule while the latter obeys linear rule.
It is well known that at zero temperature, the two compo-
nents of the magnetization in the conventional 2DEG turn to
be M�0�=− e

h�n=0
occu.En and M�1�= e

h�n=0
occu.��0−En�, respectively.

Here �0 is the zero-temperature Fermi energy and the LL
En

�+��B. The negative M�0� and the positive M�1� gives that
the net result is an oscillation of the total magnetization M as
a function of B. The oscillation amplitude increases with B

and the oscillation center is zero. However, because the LL
En��B for the present system, at zero temperature the first

component of M turns to be M�0�=− e
h�n=0

occu. En
�+�

2 , while the
second component is M�1�= e

h�n=0
occu.��0−En

�+��. By comparison
with those in the semiconductor 2DEG, one can find that in
the present TI surface system the diamagnetic contribution
�M�0�� is reduced. As a result, the oscillating center of the
magnetization is now a positive value for the case of satu-
rated zero mode. This simple comparison is not strict in
mathematics, however, it affords an intuitive explanation on
the difference of the magnetization between the TI surface
and the semiconductor 2DEG.

In the case of empty zero mode, the n=0 LL is excluded
and the first component M�0� now becomes M�0�

=− e
h�n=1

occu. En
�+�

2 , while the second component becomes M�1�

= e
h�n=1

occu.��0−En
�+��. Compared to the case of saturated zero

mode, and considering �0�E0
�+�, one can find that the mag-

netization in the case of the empty zero mode is smaller than
the saturated case by a quantity e

h�0 and therefore becomes
negative during its oscillations as a function of B.

Note that the abrupt jump in the dHvA oscillation is on
the high magnetic field side of the sawtooth, which is special
for our present choice of the thermodynamic system. If the
system is constrained to have constant chemical potential,
then the jump in the dHvA oscillation will move to the low
magnetic field side of the sawtooth, which has been con-
firmed by Meinel et al.2 in an experiment with the electron
density N modulated by applying a gate voltage to the
sample.

The above discussions on the dHvA oscillations of the
magnetization focus on the situation that the total number of
electrons on the LL’s is field independent. Now we consider
the magnetization properties in another situation that the
chemical potential is field independent. Figure 4�a� plots the
magnetization as a function of the zero-temperature chemical
potential �i.e., the Fermi energy� at B=4 T for three cases of
zero-mode filling. The dHvA oscillating patterns as a func-
tion of the chemical potential can be observed from Fig. 4�a�.
There exist different kinds of patterns for the dHvA oscillat-
ing center in different cases. When the n=0 LL is half occu-
pied by electrons, the dHvA oscillating center keeps zero
unchanged by increasing the chemical potential. When the
zero mode is saturated/empty, the dHvA oscillating center
linearly increases/decreases by increasing the chemical po-
tential. A fact that should be addressed is that because the
chemical potential is tuned freely and independent with the
external field, there are no phase difference in the dHvA
oscillations for different cases. The corresponding �M /��0
are also calculated, from which the Hall conductance �H is
obtained by combining the thermodynamic relationship and
Streda formula

�M/��0 =
1

e
�H. �9�

The result of Hall conductance as a function of the Fermi
energy is plotted in Fig. 4�b�, from which Hall plateaus can
be clearly seen. The plateau values of �H depend on the
zero-mode filling. If the n=0 LL is half filled, the Hall con-

FIG. 3. �Color online� Magnetic field dependence of �a� chemi-
cal potential � and �b� magnetization M in n-doped Bi2Se3�111�
surface system with electron density N=1.0�1016 m−2. The tem-
perature is set as kBT=0.3 meV. The black, red, and blue curves
correspond to the cases that the zero mode is half-filled, saturated,
and empty, respectively.
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ductance takes half-integer values of �H= �n+1 /2�e2 /h, as
shown in Fig. 4�b� by black step lines. To date, measuring
the half-integer quantum Hall effect on the TI surfaces keeps
a challenging task, although the LLs have been recently
observed.19 If the zero mode is saturated, then �H
= �n+1�e2 /h, as shown in Fig. 4�b� by red step lines. Finally,
if the zero mode is empty, then �H= �n−1�e2 /h, as shown in
Fig. 4�b� by blue step lines. We note that the quantum Hall
effect in the TI surface system with finite sample size has
also been discussed in Ref. 26.

The information on the magnetic susceptibility � of the TI
surfaces, which is defined as the derivative of the magneti-
zation with respect to the external magnetic field, �
=�M /�B, can be easily obtained with the knowledge of the
magnetization �Eq. �8��. The final expression of the magnetic
susceptibility is given by

� =  e

h
�
n=1

�

fn
�+�� ��

�B
− 2

�En
�+�

�B
� +

�N0

�B
f0

�+�� ��

�B
− 2

�E0
�+�

�B
��

− ��
n=1

�

N� � fn
�+�

�B

�En
�+�

�B
+ fn

�+��
2En

�+�

�B2 �
+ N0 � f0

�+�

�B

�E0
�+�

�B
+ f0

�+��
2E0

�+�

�B2 �� . �10�

Figure 5 plots the magnetic susceptibility in Bi2Se3 sample
as a function of the inverse magnetic field, 1 /B. Because the
resonant �for magnetic susceptibility� magnetic field only re-
flects the occupation of the LLs, which is the same as that in
the conventional 2DEG, it losses the message on the oscil-
lating center value of the magnetization. However, the dif-

ference between the half-filled case and saturated/empty case
of the zero mode is still clearly revealed in this figure.

In summary, we have investigated the dHvA oscillations
of the magnetization in the Bi2Se3-family surface systems.
Our results show that the dHvA oscillating center of the
magnetization maintains positive values when the n=0 LL is
fully occupied or half occupied. When this mode is empty,
the dHvA oscillating center changes a sign. These results are
fundamentally different from those in the conventional semi-
conductor 2DEG systems, in which the dHvA oscillating
center is at zero. We have given an intuitive analysis on this
difference, which turns to have an intimate relation with dif-
ferent forms of the energy dispersions in these two kinds of
systems. This can be reflected by the fact that the LLs for the
TI surfaces is proportional to �B instead of B-linear depen-
dence accommodated by the conventional 2DEG. Further-
more, the essential role that the zero mode played has been
illustrated by the different behavior of the Hall conductance
at three kinds of electron occupation of this mode. We expect
that the present results for the topologically nontrivial fea-
tures in the magnetic response of the TI surfaces can be
experimentally confirmed in the future topological magneto-
electric studies.

Note added. Recently, we were aware of an experimental
measurement27 of the magnetization for the topological insu-
lator Bi1−xSbx �0.07�x�0.22�. Compared to Bi2Se3, the
surface band structure of Bi1−xSbx alloy is much more com-
plicated. Furthermore, in Bi1−xSbx the bulk band is often
coupled with surface band during measurement. These facts
make it difficult to study the magnetic quantum oscillations
that are fully from the 2D surface states of Bi1−xSbx alloy. In
spite of these complicated facts, we expect that the phenom-
enon of large-amplitude dHvA magnetic oscillations found in
Ref. 27 is closely related to our theoretical finding in the
present paper.
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FIG. 4. �Color online� �a� Calculated magnetization as a func-
tion of the Fermi energy �0. The external magnetic field is chosen
as B=4 T. �b� The derived Hall conductance from �M /��0. The
black, red, and blue curves correspond to the cases that the zero
mode is half-filled, saturated, and empty, respectively.

FIG. 5. �Color online� Calculated magnetic susceptibility � as a
function of 1 /B. The parameters are the same as those in Fig. 3. The
black, red, and blue curves correspond to the cases that the zero
mode is half-filled, saturated, and empty, respectively.
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